
Internet Appendix for

“Options on Interbank Rates and Implied Disaster Risk”

A Literature review

We provide detailed comparisons with related papers in three tables, highlighting our modeling

innovations and empirical contributions. The first table juxtaposes our model and existing

models of time-varying disaster risk. This comparison clearly shows how our work builds upon

and differentiates itself from the existing literature. Notably, it emphasizes the reduced-form

nature of our model, distinguishing it from equilibrium models. Additionally, the table shows

that our parameter choices are estimated rather than calibrated. Our model also focuses on

different asset classes, in contrast to prior models that are calibrated to match equity market

moments.

Model type
Parameter
choices

Extracting
disaster risk

Target asset classes

This paper Reduced-form Estimation Yes
Interbank lending, caps, swaptions,

nominal government bonds

Gabaix (2012) Equilibrium Calibration No
Equity market, equity index options,

nominal government/corporate bonds

Wachter (2013) Equilibrium Calibration Yes Equity market

Tsai (2015) Equilibrium Calibration Yes
Equity market, nominal government

bonds

Seo and Wachter (2018) Equilibrium Calibration Yes
Equity market, equity index options,

CDX tranches

The second table compares different ways in which time-varying disaster risk is character-

ized in the literature. Our relative advantage is that we can identify and extract the short-run
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and long-run components of disaster risk, providing a more nuanced understanding of risk

dynamics.

How time-varying disaster risk is characterized

This paper
The short-run and long-run components of disaster risk are filtered through

the unscented Kalman filter from interbank rates and options.

Berkman, Jacobsen, and Lee (2011)
A crisis severity index is constructed based on the number of international

political crises.

Manela and Moreira (2017)
A disaster concern measure, called News implied volatility (NVIX), is

calculated using textual analysis of newspaper articles.

Bakshi, Gao, and Xue (2023)
The disaster probability is computed from put option prices by solving a

minimum discrepancy problem for the pricing kernel.

The third table compares our paper with prior studies on interest rate options. The table

highlights that our model incorporates both stochastic volatility and jump components. It

also juxtaposes the number of observable and unobservable state variables in each paper’s

main model. The empirical methodologies are also summarized in the table, in terms of

the filtering method, option pricing approach, and types of interest rate options used in the

analyses.

Stochastic
Jump

Number of state variables
Filtering Option pricing Types of interest rate options

volatility Observable Unobservable

This paper Yes Yes 1 4
Unscented

Kalman filter
Close-form
solution

ATMF swaptions and caps

Longstaff, Santa-Clara, and Schwartz (2001) No No 0 4
Eigenvalue
calculation

Simulation-
based pricing

ATMF swaptions and caps

Han (2007) Yes No 0 3
Matching with
observed prices

Close-form
solution

ATMF swaptions and caps

Trolle and Schwartz (2009) Yes No 0 3
Extended

Kalman filter
Close-form
solution

ATMF swaptions and

ATM, OTM and ITM caps

Bakshi, Crosby, Gao, and Hansen (2023) Yes No 0 5
Unscented

Kalman filter
Simulation-
based pricing

Treasury options
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B Unscented Kalman filter

As discussed in Section 3.2, we derive the discrete-time state equation based on the exact

relation between St = [λt, ξt, µt, xt]
⊤ and St−∆t = [λt−∆t, ξt−∆t, µt−∆t, xt−∆t]

⊤. To do so, we

first integrate both sides of the stochastic differential equations for λt, ξt, µt, and xt from time

t−∆t to time t:

λt = λt−∆t + κλ

∫ t

t−∆t

(ξu − λu)du+ σλ

∫ t

t−∆t

√
λudBλ,u,

ξt = ξt−∆t + κξ

∫ t

t−∆t

(ξ̄ − ξu)du+ σξ

∫ t

t−∆t

√
ξudBξ,u,

µt = µt−∆t + κµ

∫ t

t−∆t

(µ̄− xu)du+ σµ

∫ t

t−∆t

dBµ,u,

xt = xt−∆t + κx

∫ t

t−∆t

(x̄− µu)du+ σx

∫ t

t−∆t

dBx,u.

Note that an Ito integral is a martingale and, hence, its conditional mean is zero. By taking the

conditional expectations Et−∆t[·] on both sides of the equations, we simply obtain Et−∆t [St] =

η +ΨSt−∆t, where

η =


− κλξ̄

κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
+ ξ̄

(
1− e−κλ∆t

)
ξ̄
(
1− e−κξ∆t

)
µ̄
(
1− e−κµ∆t

)
x̄
(
1− e−κx∆t

)


,

Ψ =


e−κλ∆t κλ

κλ−κξ

(
e−κξ∆t − e−κλ∆t

)
0 0

0 e−κξ∆t 0 0

0 0 e−κµ∆t 0

0 0 0 e−κx∆t


.

This relation allows us to express St as in equation (13):

St = Et−∆t[St] + ϵt, where Et−∆t[ϵt] = 0 and Vart−∆t[ϵt] = Ωt−∆t,
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where the 4× 4 covariance matrix Ωt−∆t is given by

Ωt−∆t =


Ωλλ,t−∆t Ωλξ,t−∆t 0 0

Ωλξ,t−∆t Ωξξ,t−∆t 0 0

0 0 Ωµµ,t−∆t 0

0 0 0 Ωxx,t−∆t


.

Clearly, ϵt is non-normal. However, in order to use a conventional filtering approach, we

approximate it by a mean-zero normal random variable with the same covariance matrix

Ωt−∆t.
1 We find each element of Ωt−∆t by considering the marginal and joint dynamics of λt,

ξt, µ, and xt:

Ωλλ,t−∆t =
κ2
λσ

2
ξξt−∆t

(κλ − κξ)2κξ

(
e−κξ∆t − e−2κξ∆t

)
+

κ2
λξ̄σ

2
ξ

2(κλ − κξ)2κξ

(
1− e−κξ∆t

)2
−

2κλσ
2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2
(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

2κ2
λσ

2
ξ ξ̄

(κλ − κξ)2(κξ + κλ)

(
1− e−(κλ+κξ)∆t

)
+

κ2
λσ

2
ξ (ξt−∆t − ξ̄)

(κλ − κξ)2(2κλ − κξ)

(
e−κξ∆t − e−2κλ∆t

)
+

κλσ
2
ξ ξ̄

2(κλ − κξ)2
(
1− e−2κλ∆t

)
+

(λt−∆t − ξ̄)σ2
λ

κλ

(
e−κλ∆t − e−2κλ∆t

)
+

κλ(ξt−∆t − ξ̄)σ2
λ

(κλ − κξ)(2κλ − κξ)

(
e−κξ∆t − e−2κλ∆t

)
− (ξt−∆t − ξ̄)σ2

λ

κλ − κξ

(
e−κλ∆t − e−2κλ∆t

)
+

ξ̄σ2
λ

2κλ

(
1− e−2κλ∆t

)
,

Ωξξ,t−∆t =
σ2
ξξt−∆t

κξ

(
e−κξ∆t − e−2κξ∆t

)
+

σ2
ξ ξ̄

2κξ

(
1− e−κξ∆t

)2
,

Ωλξ,t−∆t =
κλ

κλ − κξ

Ωξξ,t−∆t

−
σ2
ξ

(
ξt−∆t − ξ̄

)
κλ − κξ

(
e−κξ∆t − e−(κλ+κξ)∆t

)
−

κλσ
2
ξ ξ̄

(κλ − κξ)(κλ + κξ)

(
1− e−(κξ+κλ)∆t

)
,

Ωµµ,t−∆t =
σ2
µ

2κµ

(
1− e−2κµ∆t

)
,

Ωxx,t−∆t =
σ2
x

2κx

(
1− e−2κx∆t

)
.

Since our measurement equation is not linear in the state variables, we adopt the unscented

1As discussed in Section 3.2, it is well known that the effect of this approximation is minimal.
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Kalman filter. The predicted state vector and its variance at time t − ∆t (i.e., Ŝt|t−∆t and

Pt|t−∆t) are given as follows:

Ŝt|t−∆t = η +ΨŜt−∆t,

Pt|t−∆t = ΨPt−∆tΨ
′ + Ωt−∆t.

We define sigma points that help capture the mean and variance of the latent state vari-

ables. Specifically, we select the following set of 2L + 1 sigma points (S) and weights (Wm

for the mean and W c for the covariance of the observations evaluated at the sigma points):

S0 = Ŝt|t−∆t,

Si = Ŝt|t−∆t +
(√

(L+ χ)Pt|t−∆t

)
i
, i = 1, · · · , L,

Si = Ŝt|t−∆t −
(√

(L+ χ)Pt|t−∆t

)
i−L

, i = L+ 1, · · · , 2L,

and

Wm
0 =

χ

L+ χ
,

W c
0 =

χ

L+ χ
+ (1− α2 + β),

Wm
i = W c

i =
1

2(L+ χ)
, i = 1, · · · , 2L,

where L is the number of the latent variables, χ = α2(L + κ) − L is a scaling parameter,

and
(√

(L+ χ)Pt|t−∆t

)
i
is the i-th column of the matrix square root. In this paper, we use

α = 0.01, β = 2, and κ = 0.

The mean and covariance of the predicted vector Ŷt are computed using a weighted mean
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and covariance of the sigma points:

Ŷt|t−∆t =
2L∑
i=0

Wm
i h(Si),

P y
t|t−∆t =

2L∑
i=0

W c
i

(
h(Si)− Ŷt|t−∆t

)(
h(Si)− Ŷt|t−∆t

)′
+Q.

Then, we obtain the filtered state vector at time t (i.e., Ŝt) as follows:

Ŝt = Ŝt|t−∆t +Ktêt,

Pt = Pt|t−∆t −KtP
y
t|t−∆tK

′
t,

where

Kt =
2L∑
i=0

W c
i

(
Si − Ŝt|t−∆t

)(
h(Si)− Ŷt|t−∆t

)′ (
P y
t|t−∆t

)−1

,

êt = Yt − Ŷt|t−∆t.

For the initial month, the values of Ŝt−∆t and Pt−∆t are set to be the unconditional mean

and variance of St. The Kalman filter recursion also enables us to calculate the likelihood of

observing Yt conditional on Yt−∆t:

logLt = − l

2
log(2π)− 1

2
log |P y

t|t−∆t| −
1

2
ê′t

(
P y
t|t−∆t

)−1

êt,

where l is the size of the vector Yt.
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C Estimation of nested models

The key feature of our model is disaster risk, which consists of time-varying short-run and

long-run components. To demonstrate the importance of disaster risk, we examine two nested

cases: (i) constant long-run mean of disaster risk (i.e., no variation in ξt) where κξ = σξ =

δξ = θξ = 0; (ii) constant disaster risk (i.e., no variation in λt) where κξ = κλ = σξ = σλ

= δξ = δλ = θξ = θλ = 0. It is important to note that we do not consider a specification

without disaster risk (no jump component at all) because, in the absence of disaster risk, the

interbank rate would collapse to the OIS rate under our model setup. Parameter estimates

for both alternative models are presented in the tables below:

Nested case (i): Constant long-run mean of disaster risk

Consumption growth

κµ σµ σC µ̄
Est. 0.0687 0.0035 0.0078 0.0105
(SE) (0.0003) (0.0000) (0.0001)

Expected inflation
κq σq q̄

Est. 0.5239 0.0065 0.0212
(SE) (0.3153) (0.0011) (0.0028)

Disaster risk
κλ σλ p̄ ξ̄

Est. 0.4252 0.1385 0.9214 0.0286
(SE) (0.0030) (0.0003) (0.0076)

Convenience yield
κx σx x̄

Est. 0.8162 0.0017 0.0021
(SE) (0.1915) (0.0003) (0.0004)

Short rate
δλ δq δµ δ0

Est. -0.1004 0.4253 2.4470 -0.0174
(SE) (0.0005) (0.0024) (0.0224)

Market price of risk
θλ θq θµ θN

Est. -0.1381 -4.2443 0.1968 -0.1699
(SE) (0.0005) (0.0288) (0.0008) (0.0009)

Measurement errors
σSP σITR σOPT

Est. 0.0016 0.0033 0.0745
(SE) (0.0000) (0.0000) (0.0007)

One notable observation from the estimation of these two nested models is that the pa-

rameter estimates of κµ are much smaller than that in our main specification in Table 2.

These estimates are around 0.05, which is similar to the estimate of κξ in Table 2. This

finding suggests that a very highly persistent state variable is required to capture the time
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Nested case (ii): Constant disaster risk

Consumption growth

κµ σµ σC µ̄
Est. 0.0435 0.0042 0.0077 0.0105
(SE) (0.0007) (0.0001) (0.0001)

Expected inflation
κq σq q̄

Est. 0.5239 0.0065 0.0212
(SE) (0.3153) (0.0011) (0.0028)

Disaster risk
p̄ ξ̄

Est. 0.8496 0.0286
(SE) (0.0063)

Convenience yield
κx σx x̄

Est. 0.8162 0.0017 0.0021
(SE) (0.1915) (0.0003) (0.0004)

Short rate
δq δµ δ0

Est. 0.5744 2.1526 -0.0203
(SE) (0.0077) (0.0461)

Market price of risk
θq θµ θN

Est. -2.8155 0.1174 -0.0880
(SE) (0.0415) (0.0011) (0.0005)

Measurement errors
σSP σITR σOPT

Est. 0.0038 0.0039 0.0736
(SE) (0.0000) (0.0003) (0.0010)

series of interest rates and option-implied volatilities. Since ξt is no longer time-varying in

the nested models, the persistence of µt is artificially forced to be very high. The omission

of time-varying ξt increases the measurement error in interest rates by 13 to 19 basis points.

When λt is held constant, the measurement error in interest rate spreads more than doubles.

In addition to the two cases related to disaster risk, we consider a third nested model:

(iii) absence of expected inflation, where we set κq = σq = q̄ = δq = θq = 0. While expected

inflation plays a crucial role in capturing the level of interest rates in the full model, its

omission is not impossible given the reduced-form nature of our framework. The corresponding

parameter estimates are reported in the table below.

Given that these alternative models are nested within our main model specification, we

conduct a likelihood ratio test to compare their performance. The table below reports the

log-likelihood for the full model alongside those for the three nested models. Under the null of

no difference between the main model and each nested model, the likelihood ratio test statistic

2× (logL − logLnested) should follow a chi-square distribution with degrees of freedom equal
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Nested case (iii): Absence of expected inflation

Consumption growth

κµ σµ σC µ̄
Est. 0.5799 0.0056 0.0086 0.0105
(SE) (0.0098) (0.0002) (0.0001)

Disaster risk

κξ σξ ξ̄
Est. 0.0442 0.0215 0.0286
(SE) (0.0009) (0.0001)

κλ σλ p̄
Est. 0.4472 0.1749 0.8824
(SE) (0.0067) (0.0006) (0.0220)

Convenience yield
κx σx x̄

Est. 0.8162 0.0017 0.0021
(SE) (0.1915) (0.0003) (0.0004)

Short rate
δλ δξ δµ δ0

Est. -0.1294 -2.1165 1.9295 0.0581
(SE) (0.0020) (0.0119) (0.0087)

Market price of risk
θλ θξ θµ θN

Est. -0.1190 -0.2655 0.1015 -0.1386
(SE) (0.0008) (0.0008) (0.0027) (0.0035)

Measurement errors
σSP σITR σOPT

Est. 0.0014 0.0022 0.0776
(SE) (0.0000) (0.0000) (0.0007)

to the number of restrictions. The table shows that the resulting p-values are virtually zero,

rejecting the nested models and thereby supporting our original specification.

Main (i) Constant ξ (ii) Constant λ (iii) Without q

logL 26,741.17 25,160.56 23,897.70 26,386.13

p-value 0.00 0.00 0.00
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D Equivalent bond price volatility

In Figure 3, the Black-implied volatilities for the 2-year cap are generally much higher than

those for the 5-year cap. Furthermore, in all of the panels in Figure 3, the Black-implied

volatilities between 2010 and 2016 are exceptionally high even compared to the Great Reces-

sion period between 2007 and 2009.

Why do the time series and cross sectional patterns of Black-implied volatilities seem

odd? The reason is that Black-implied volatilities for caps and swaptions, converted from

their market prices through the Black formulas, represent yield volatilities, not bond price

volatilities. Hence, the level of Black-implied volatilities simply tends to be higher when the

level of interest rates is lower. This explains why Black-implied volatilities in the data turn

out to be so high in the post Great Recession period despite relatively lower uncertainty in

the market: a 1% expected movement in a yield corresponds to 20% yield volatility if the

yield is currently at 5%, whereas it corresponds to 100% if the yield is at 1%.

To facilitate interpretation, it is possible to convert each Black-implied volatility into its

equivalent price volatility. Under the Black model, forward yield volatility σyield shares the

following relation with forward-starting bond price volatility σprice:

σprice = τ × y × σyield,

where, with a slight abuse of notation, τ is the maturity of the bond and y is the given

(forward) yield. Using this simple relation, we can covert the Black-implied volatilities in the

data and in the model into their equivalent forward-starting bond price volatilities.

The figure below plots the time series of the equivalent bond price volatilities for the 2-,

3-, and 5-year caps (Panels A, B, and C) and those for the 1-into-4, 2-into-3, and 4-into-

1 swaptions (Panels D, E, and F) in the data (solid blue lines) and in the model (dashed

red lines). The Black-implied volatility for the T -maturity cap is converted into the price

volatility of a bond that corresponds to its last caplet: a 6-month zero-coupon bond starting

after (T − 0.5) years and maturing after T years from today. The Black-implied volatility for
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the T -into-T̄ swaption is converted to the price volatility of a T̄ -maturity zero-coupon bond

starting T years from today. The sample period is from February 2002 to December 2019.

Panel A: 2-year cap Panel B: 3-year cap Panel C: 5-year cap

Panel D: 1-into-4 swaption Panel E: 2-into-3 swaption Panel F: 4-into-1 swaption
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E Filtered time series of xt and µt

The figure below presents the filtered time series of the instantaneous convenience rate xt

(Panel A) and mean consumption growth per month µt/12 (Panel B) from February 2002

to December 2019. In Panel B, we overlay the time series of monthly mean consumption

growth (solid blue line) with that of monthly realized consumption growth (dashed red line).

Summary statistics for each time series are also reported.

Panel A: Convenience rate

Panel B: Consumption growth

Mean SD Min 5th 50th 95th Max

x 0.06 0.15 -0.20 -0.12 0.00 0.33 0.59
µ 0.94 0.53 -0.46 0.01 1.00 1.81 2.11
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F COVID-19 pandemic crisis

In 2020, the global economy and financial markets were severely impacted by the COVID-19

pandemic crisis. What do interbank rates and their options imply about this crisis through

our model framework?

We extend our data sample and examine how the implied short-run and long-run compo-

nents of disaster risk progressed over the pandemic period. Based on the estimated parameters

in Table 2, we apply the unscented Kalman filter from Section 3.2 to the additional data from

January 2020 to December 2020. The figure below plots the resulting time series of filtered

λt (solid blue line) and ξt (dashed red line).

The figure reveals that the long-run component ξt slightly increased at the onset of the

crisis and remained elevated throughout 2020 (4.1% in December). In contrast, the short-

run component λt exhibited drastic changes over the period. Until February, λt stayed at

a low level of around 1%, but it jumped up to 5.0% in March. This was followed by an

abrupt decline in April and May, pushing λt quickly back to its pre-pandemic level. Overall,

the figure suggests that, at least through our model framework, the COVID-19 pandemic

resulted in a very short-lived economic/financial crisis, despite its long-lasting impacts. This

interpretation is in line with the view of the Business Cycle Dating Committee of the NBER;

the committee determined that the pandemic-originated recession only lasted for two months

(March and April), making it the shortest U.S. recession ever documented.
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G Structure of bond price volatility

In our model, the bond volatility is a function of the two disaster state variables λt and ξt.

More formally, let Pi(t, t+ τ) denote the price of a zero-coupon interbank lending where τ is

the bond maturity. By Ito’s lemma, the price dynamics under the physical measure can be

expressed as follows:

dPi,t

Pi,t−
= µPi,tdt+ bi,λ(τ)σλ

√
λtdBλ,t + bi,ξ(τ)σξ

√
ξtdBξ,t

+ bi,µ(τ)σµdBµ,t + bi,q(τ)σqdBq,t +
(
ebi,q(τ)Zq,t − 1

)
dNt.

This implies that the instantaneous bond volatility is calculated by

dVart(logPit)

dt
=

(
b2i,q(τ)σ

2
q + b2i,µ(τ)σ

2
µ

)︸ ︷︷ ︸
φ0(τ)

+
(
b2λ(τ)σ

2
λ + b2i,q(τ)Et

[
Z2

q,t

])︸ ︷︷ ︸
φλ(τ)

λt + b2ξ(τ)σ
2
ξ︸ ︷︷ ︸

φξ(τ)

ξt.

The figure below plots the two factor loadings φλ(τ) and φξ(τ), as well as the intercept

term φ0(τ), as functions of τ . While we can see that the intercept term is very small and

does not vary much with maturity (Panel A), the two factor loadings increase monotonically

(Panels B and C). Comparing the two, the factor loading for ξt rises much faster with a steeper

slope than that for λt. The rate of increase is also larger; φξ(τ) is convex in τ , whereas φλ(τ)

is concave. This is intuitive since the long-run component of disaster risk has a greater effect

on long-term rates, which leads to a larger impact on the variance of long-term bonds.

Panel A: φ0(τ) Panel B: φλ(τ) Panel C: φξ(τ)
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